1977 CHEVROLET TRUCK CHASSIS/ENGINE VALUE FEATURES

CONTENTS

SUBJECT	PAGE
• LIGHT-DUTY PRODUCT OFFERINGS	2
CHASSIS/CAB MODEL SELECTOR	3
• BRAKE VALUE FEATURES	4-5
CHASSIS VALUE FEATURES	6-7
• FULL-TIME 4-WHEEL DRIVE	8
CONVENTIONAL 4-WHEEL DRIVE	9
• ELECTRICAL VALUE FEATURES	10
• EMISSIONS CONTROL SYSTEMS	11-13
HIGH-ALTITUDE EMISSIONS REGULATIONS	14-15
	16

1977 CHEVROLET TRUCK LIGHT-DUTY PRODUCT OFFERINGS

Pickups

Chevy Van/ Sportvan

Blazer

Chassis/Engine—Page 2

Suburbans

1977 CHEVROLET TRUCK CHASSIS/CAB MODEL SELECTOR

化学学说 化化学传输

CHASSIS-CAB

REGULAR CAB-2 WHEEL DRIVE

Series	Model Number	WB	CA	Body Code	GVWR Range	Payload Range
C10	C10703	117.5″	42″	ZW9	(050 (200	1674-2724
	C10903	131.5″	56″	ZW9	0050-0200	1587-2637
C20	C20903	131.5″	56″	ZW9	6400-8200	2628-4403
C30	C30903	131.5″	56″	ZW9	6600-9000	2687-5028
	C31003	135.5″	60″	ZW9	6600 10 000*	2682-5790
	C31403	159.5″	84″	ZW9	0000-10,000*	2666-5588

BONUS/CREW CAB-2 WHEEL DRIVE

Series	Model Number	WB	CA	Body Code	GVWR Range	Payload Range
C20	C20943 (BONUS)	164.5″	56″	ZW9	7500-8200	3336-3984
	C20943 (CREW)	164.5″	56″	ZW9/AS3	8200	3800-3910
C30	C30943 (BONUS)	164.5″	56″	ZW9	0000 10 000*	4446-5212
L.	C30943 (CREW)	164.5″	56″	ZW9/AS3	9000-10,000*	4372-5138

REGULAR CAB-4 WHEEL DRIVE

Series	Model Number	WB	CA	Body Code	GVWR Range	Payload Range
K10	K10703	117.5″	42″	ZW9	6200	2415-2539
	K10903	131.5″	56″	ZW9	0200	2308-2432
K20	K20903	131.5″	56″	ZW9	6800-8400	2687-4283
K30★	K30903	131.5″	56″	ZW9	8600-9200	4112-4700
	K31003	135.5″	60″	ZW9	8600-10,000*	4202-5359
	K31403	159.5″	84″	ZW9	10,000*	5118-5211

BONUS/CREW CAB-4 WHEEL DRIVE

Series	Model Number	WB	CA	Body Code	GVWR Range	Payload Range
K30★	K30943 (BONUS) K30943 (CREW)	164.5″ 164.5″	56″ 56″	ZW9/AS3 ZW9/AS3	9200-10,000*	4156-4711 4102-4637

* With dual rear wheels

 \star K30 models new for 1977

1977 CHEVROLET TRUCK BRAKE VALUE FEATURES

Front disc brakes standard • Provide good fade resistance, quick recovery from effects of water immersion • Splash-shield for added protection • Pads formulated for fade-resistance, long life.

Lining wear sensor included (all vehicles under 8400 lbs. GVWR) • Spring-steel sensor contacts rotor during advanced pad wear • Gives audible signal that pad replacement or other maintenance service is needed • Warns of pad wear before costly rotor damage.

Power brake pedal is a full 7 inches wide for convenient braking.

Computer-matched brake systems • Standard front disc brakes, finned rear drum brakes, size and capacity of power assists computer-matched into complete systems by GVWR.

Customer benefits of Chevrolet systems include • Comparable braking capability in all GVW ranges • Good fade resistance and braking effectiveness • Good partial-system stopping performance • Good pedal effort without power assist • Good lining life.

New 4-wheel disc brakes • Included with the available 11,000-lb. rear axle required for 12,000-and 14,500-lb. GVWRs on P Series models.

Pressure-proportioning valves engineered for each system • Calibrated for GVW rating within series and vehicle weight ratings • Provide front-rear brake balance at high line pressures

• Maintain front disc brake pressure while adjusting rear drum pressure to help compensate for forward weight transfer.

Hydro-Boost® power assist • Standard on all Series 30 models over 8400 lbs. GVWR • Small in size, high in braking capability—up to 1800-psi line pressure (about twice the capacity before runout compared with the tandem vacuum unit it replaces) • Minimum fluid draw from power steering pump no effect on steering response or feel in normal driving • Reserve capacity for up to three stops after power loss • Ratio-change feature —requires less pedal pressure than comparable vacuum unit without power.

Finned rear drum brakes • Cast iron steel drums have integral cooling fins • Drum size increases with GVW rating, along with shoe swept area • Lining material formulated for braking balance and consistency.

Drums shaped to exclude contaminants • Labyrinth outer edge helps keep out dirt and water.

1977 CHEVROLET TRUCK BRAKE VALUE FEATURES

		Maxi-	Fron	t Brakes	Rear B	rakes	Beaston
Model		mum GVWR	Rotor Size	Pad Swept Area	Drum Size	Shoe Swept Area	Туре
Blazer	C10	6050	11.86″	37.43 sq. in.	11" x 2"	74.37 sq. in.	Single Vacuum
	K10	6200	11.86″	37.43 sq. in.	11.15" x 2.75"	107.42 sq. in.	Tandem Vacuum
Pickup	C10	4900	11.86″	37.43 sq. in.	11" x 2"	74.37 sq. in.	None
		5600	11.86″	37.43 sq. in.	11" x 2"	74.37 sq. in.	Single Vacuum
		6200	11.86″	37.43 sq. in.	11.15" x 2.75"	107.42 sq. in.	Tandem Vacuum
	K10	6200	11.86″	37.43 sq. in.	11.15" x 2.75"	107.42 sq. in.	Tandem Vacuum
C20 K20		7100	12.5″	37.43 sq. in.	11.15" x 2.75"	107.42 sq. in.	Tandem Vacuum
		8200	12.5″	37.43 sq. in.	13" x 2.5"	116.38 sq. in.	Tandem Vacuum
		6800	12.5″	37.43 sq. in.	11.15" x 2.75"	107.42 sq. in.	Tandem Vacuum
		8400	12.5″	37.43 sq. in.	13" x 2.5"	116.38 sq. in.	Tandem Vacuum
	C 30	8200	12.5″	37.43 sq. in.	13" x 2.5"	116.38 sq. in.	Tandem Vacuum
		10,000	12.5″	45.81 sq. in.	13" x 3.5"	162.35 sq. in.	Hydraulic
	K30	10,000	12.5″	45.81 sq. in.	13" x 3.5"	162.35 sq. in.	Hydraulic
Chevy Van	G10	4900	11.86″	37.43 sq. in.	11" x 2"	74.37 sq. in.	None
		5600	11.86″	37.43 sq. in.	11" x 2"	74.37 sq. in.	Single Vacuum
	G20	6400	11.86″	37.43 sq. in.	11.15" x 2.75"	107.42 sq. in.	Tandem Vacuum
	G30	8400	12.5″	37.43 sq. in.	11.15" x 2.75"	107.42 sq. in.	Tandem Vacuum
Suburban	C10	7000	11.86″	37.43 sq. in.	11.15" x 2.75"	107.42 sq. in.	Tandem Vacuum
	K10	7300	11.86″	37.43 sq. in.	11.15" x 2.75"	107.42 sq. in.	Tandem Vacuum
	C20	7100	12.5″	37.43 sq. in.	11.15" x 2.75"	107.42 sq. in.	Tandem Vacuum
		8200	12.5″	37.43 sq. in.	13" x 2.5"	116.38 sq. in.	Tandem Vacuum
	K20	6800	12.5″	37.43 sq. in.	11.15" x 2.75"	107.42 sq. in.	Tandem Vacuum
		8400	12.5″	37.43 sq. in.	13" x 2.5"	116.38 sq. in.	Tandem Vacuum
Sportvan	G10	5600	11.86″	37.43 sq. in.	11" x 2"	74.37 sq. in.	Single Vacuum
	G20	6400	11.86″	37.43 sq. in.	11.15" x 2.75"	107.42 sq. in.	Tandem Vacuum
	G30	8400	12.5″	37.43 sq. in.	11.15" x 2.75"	107.42 sq. in.	Tandem Vacuum
Step-Van &	P10	6200	11.86″	37.43 sq. in.	11.15" x 2.75"	107.42 sq. in.	Tandem Vacuum
FC Chassis	P20	6800	12.5″	37.43 sq. in.	11.15" x 2.75"	107.42 sq. in.	Tandem Vacuum
		8000	12.5″	37.43 sq. in.	13" x 2.5"	116.38 sq. in.	Tandem Vacuum
	P30	8200	12.5″	37.43 sq. in.	13" x 2.5"	116.38 sq. in.	Tandem Vacuum
		10,500	12.5″	45.81 sq. in.	13" x 3.5"	162.35 sq. in.	Hydraulic
		14,000*	14.25″	45.81 sq. in.	13.75" x 1.53" (Rotor Size)	47.41 sq. in.	Hydraulic
Hi-Cube	G30	7400	12.5″	37.43 sq. in.	13" x 2.5"	116.38 sq. in.	Tandem Vacuum
Van & RV Cutawav &		8400	12.5″	37.43 sq. in.	13" x 2.5"	116.38 sq. in.	Tandem Vacuum
Commercial	_	8900	12.5″	45.81 sq. in.	13" x 2.5"	116.38 sq. in.	Hydraulic
Curaway Val	•	10,000	12.5″	45.81 sq. in.	13" x 2.5"	116.38 sq. in.	Hydraulic

*Only available with 4-wheel power disc brakes.

1977 CHEVROLET TRUCK CHASSIS VALUE FEATURES

Massive Girder Beam independent front suspension on 2-wheel-drive models • Built for rugged truck service • Friction-free coil springs • Husky control arms at either end • Each pair moves independently up and down • Steps individually over rough spots, helping smooth the ride for driver and cargo.

Servicing and alignment of Massive Girder Beam suspension can be accomplished on most alignment equipment without removing suspension components • Toe-in adjusted at *each* wheel.

Shielded shock absorbers are protected from foreign particles, stone damage • Helps extend shock absorber life.

Tough ladder-type frames • Deep-section channel side rails are strong and durable • Dropcenter design allows lower cab mounting, easier entry and exit • Alligator-jaw crossmembers add strength, help prevent "laddering."

Center section of rear engine crossmember • Can be dropped to remove transmission without removing entire crossmember.

Steel braces from front bumper to frame
Add lateral support
Offer added resistance to bumper side impact.

1977 CHEVROLET TRUCK CHASSIS VALUE FEATURES

Salisbury rear axle • Large ring gear for added durability • Tapered roller bearings for reduced friction • Broad ratio coverage to tailor the truck to the load • Three-piece housing with inspection plate on differential carrier allows easy servicing.

Eaton locking differential available • Allows true differential action under normal driving conditions and complete lockup upon slip of either rear wheel in forward or reverse • Locks automatically for traction by sensing wheel spin, delivering total vehicle drive capability for any given situation • Transition is quiet and rapid • Helps reduce ratcheting, shock and tire wear

• Disengages automatically with a slight torque reversal across the axle • Action occurs continually during vehicle operation to provide added traction when needed.

Energy-absorbing steering column helps absorb impact force in the event of a frontal accident • Telescopes to provide a cushioning effect.

Rubber-bushed inner control arm pivots on C10 models to help eliminate suspension chatter • Result is a smooth and quiet ride • Threaded steel bushings used for C20 and C30 models • Rubber control arm bumper used on all models to cushion excessive up-and-down wheel movement.

Tough engine mount design • Rubber compressed between welded steel backing plate and steel outer housing • Provides a vibration-absorbing cushion between engine and frame.

Compression-positioned exhaust hangers • Expansion unrestricted • Helps isolate exhaust system vibrations • Full-loop hanger provides secondary support.

Coolant recovery system standard • Under normal operating conditions, engine coolant overflows into reservoir • When engine cools, overflow is siphoned back into radiator, helping maintain correct level.

Counter-angled rear shocks

• One slanting forward, the other aft • Helps reduce brake and power hop.

Rear leaf springs • Two-stage multi-leaf rear springs • Adjust to load automatically • Added support empty or loaded • Spring eyes and shackles rubber bushed to reduce noise and ride harshness • Second-stage spring leaf has guide to maintain

alignment • Plastic inserts reduce interleaf friction.

Auxiliary rear springs available • Combination 2-stage and auxiliary rear springs are available on C-K30 models • Heavy-duty front and rear shock absorbers also available.

1977 CHEVROLET FULL-TIME 4-WHEEL DRIVE

Full-time 4-wheel drive available on all Pickups, Suburbans and Blazers equipped with Turbo Hydra-matic:

- Vehicle is in 4-wheel drive at all times
- Interaxle differential in the transfer case compensates for speed variations between front and rear axles
- Constantly provides driving force to both axles
- Eliminates the need for free-wheeling hubs
- Supplies traction power needed for off-road going
- Improves stability under varying road conditions
- No need to go in and out of vehicle to lock and unlock front hubs
- All 4-wheel-drive controls are inside the cab
- Dash-mounted warning light is on when system is in H Loc or L Loc position.

Low silhouette, high ground clearance:

- Transfer case mounted directly to transmission
- Seven inches of ground clearance Low center of gravity Entry heights range from 21" to 24" depending on vehicle tire size.

- **L Loc** Interaxle differential is locked out, solidly connecting front and rear axles. Delivers equal torque to both axles at 2.0:1 gear reduction. Used *only* where low-traction surfaces allow wheel slippage to relieve driveline torque windup.
- L Interaxle differential is operating, providing power to both axles at 2.0:1 gear reduction. Prevents torque windup which occurs when axles are solidly connected. Used for all normal driving when maximum power is required.
- N Transfer case is disengaged from front and rear axles; vehicle is stationary. Used for power takeoff operation.
- Interaxle differential is operating, providing power to both axles at 1.0:1 gear reduction in direct drive. Prevents torque windup which occurs when axles are solidly connected. Used for all normal driving on high- or low-traction surfaces.
- **H Loc** Interaxle differential is locked out, solidly connecting front and rear axles. Delivers equal torque to both axles at 1.0:1 gear reduction in direct drive. Used *only* where low-traction surfaces allow wheel slippage to relieve driveline torque windup.

1977 CHEVROLET CONVENTIONAL 4-WHEEL DRIVE

Conventional 4-wheel drive furnished on models with manual transmissions:

- **4 Lo** Front and rear axles solidly connected. Equal torque to both axles at approximately 2.0:1 gear reduction. For maximum power in 4-wheel drive. Used *only* where low-traction surfaces allow wheel slippage to relieve drive-line torque buildup.
- N Transfer case disengaged from front and rear axles. Vehicle stationary. Used for power takeoff operation.
- **2 Hi** Front axle disengaged. Torque delivered only to rear axle in 1.0:1 direct drive. Used for all normal driving on high-traction surfaces.
- **4 Hi** Front and rear axles solidly connected. Equal torque to both axles in 1.0:1 direct drive. For normal operation in 4-wheel drive. Used *only* where low-traction surfaces allow wheel slippage to relieve driveline torque buildup.

Locking rear axle available • Eaton unit provides true differential action in both 2- and 4-wheel drive • Complete lockup upon slip of either rear wheel in forward or reverse • Transition is quiet and rapid • Helps reduce ratcheting, shock, tire wear.

Locking front hubs • Permit disengaging front wheels from drive train for 2-wheel-drive operation
Standard with conventional 4-wheel drive.

1977 CHEVROLET ELECTRICAL VALUE FEATURES

Single fuse location • Fuse panel for all circuits, standard and accessory, is mounted on the firewall inside the cab.

Protected headlamp wiring harness • Encased in waterproof molded plastic conduit • Good protection against shorts caused by moisture penetration.

Integral voltage regulator • Delcotron generator and voltage regulator are housed in one unit to provide ease of servicing.

Delco Freedom battery • Requires no addition of water • Built-in charge indicator eliminates vent cap loss and corrosion from electrolyte spillage
TP2 option rated at 3500 watts and UA1 option rated at 4000 watts.

BATTERY RATINGS

2500 WATTS	3200 WATTS	3500 WATTS	4000 WATTS
45 amps	50 amps	61 amps	80 amps
Watt ratings (Amps at 20 ar	0° F.	of unps	

1977 CHEVROLET EMISSIONS CONTROL SYSTEMS

Evaporation Control System (ECS) • Limits hydrocarbons lost to atmosphere from fuel vapors • Routes vapors from non-vented fuel tank to storage cannister in engine compartment • With engine off, absorbs vapors in charcoal granules • With engine on, returns vapors via PCV hose to inlet manifold so they can be burned.

Exhaust Gas Recirculation (EGR) • Introduces exhaust gases to engine induction system through passages cast into intake manifold • Lowers combustion temperatures, reduces formation of nitrogen oxide • Controlled by manifold vacuum

• Normally closed at idle.

Positive Crankcase Ventilation (PCV) • Prevents crankcase "blow-by" fumes from entering atmosphere or mixing with oil to create sludge • Routes crankcase vapors to intake manifold, replaces fumes with fresh air from air cleaner • Controlled by one-way PCV valve, regulated by intake manifold vacuum for idle, acceleration, cruise.

Controlled Combustion System (CCS) • Modifies carburetor calibration, engine idle speed, distributor timing to control exhaust emissions • Produces more complete combustion at low and intermediate speeds

• Heats engine air, as required, by directing exhaust heat to a thermostatically controlled valve in the aircleaner assembly (see CHA).

Throttle Return Control (TRC) • Reduces hydrocarbon and carbon monoxide emissions while vehicle is "coasting" • Throttle-lever actuator on carburetor opens primary venturi a preset amount over curb idle • Controlled by high manifold vacuum during extended overrun.

See charts for application by Series and GVWR.

1977 CHEVROLET EMISSIONS CONTROL SYSTEMS

Air Injection Reactor System (AIR) • Supplies filtered, compressed air to cylinder-head exhaust ports near exhaust valves • Resulting oxidation reduces unburned hydrocarbon and carbon monoxide gases in vehicle exhaust • Diverter valve and bypass are controlled by engine vacuum.

Carburetor Heated Air (CHA) • Allows significantly leaner carburetor calibration for reduced emissions • Heats carburetor air to 100°F when underhood temperatures are lower • Damper door from exhaust manifold heat stove regulates heated air • Controlled by engine vacuum or bimetallic thermostat • Minimizes carburetor icing and improves engine drivability during warm-up cycle.

Under Floor Converter (UFC) • Catalytic bed inside converter changes hydrocarbons and carbon monoxide to harmless emissions • Shell made of stainless steel with aluminized steel cover and ceramic felt insulation between • Exhaust pipe ahead of converter also is stainless steel • Use of unleaded fuel promotes spark plug life, allows longer intervals between recommended oil changes.

Early Fuel Evaporation (EFE) • Reduces exhaust emissions by preheating incoming fuel for improved combustion • During cold starts, vacuum motor immediately closes exhaust manifold heat valve
Hot exhaust gases flow around inlet manifold and heat incoming fuel • More complete fuel evaporation during warm-up improves drivability.

Outside Air Duct (OAD) • Routes cooler outside air from grille intake directly to carburetor air cleaner • Charges cylinders with denser air-fuel mixture • Helps improve performance in all speed ranges after initial warm-up.

See charts for application by Series and GVWR.

1977 CHEVROLET EMISSIONS CONTROL SYSTEMS

SERIES 10-30 TRUCKS

Light-Duty Emissions Systems (6000 lbs. GVW and under)									Hea	vy-Di (Ove	ity En er 6000	nission lbs. G	s Syst VW)	ems				
Engine	Appli.*	PCV	EGR	CCS	ECS	EFE	CHA	UFC	AIR	ISS	PCV	EGR	CCS	ECS	TRC	СНА	ÄIR	ISS
250 L6	Federal	X	X	X	X	X	X	X		X	X		X			X		X
1 -bbl	California	X	X	X	X	X	X	X		X				Not C	Offered			
292 L6	Federal				N	ot Offer	red				X		X			X		X
1- bb l	California				N	ot Offer	red				X		X	X	X	X		X
305 V8	Federal	X	X	X	X	X	X	X			X		X		X	X		
2-bb l	California	California Not Offered								Not Offered								
350 V8	Federal 🔺	X	X	X	X	X	X	X			X		X			X		
4-bbl	California	♦ X	X		X	X	X	X	X		X			X	X	X	X	
400 V8	Federal				N	ot Offer	red				X		X			X		
4-bbl	California				N	ot Offer	red				X			X	X	X	X	
454 V8	Federal	X	X		X	X	X		X		X		X			X		
4-bbl	California				N	ot Offer	red				X	X		X	X	X	X	

*"Federal" indicates required Emission Systems in all states except California. "California" refers to equipment required for California only. PCV—Positive Crankcase Ventilation EGR—Exhaust Gas Recirculation CCS—Controlled Combustion System ECS—Evaporation Control System EFE—Early Fuel Evaporation AIR—Air Inj ECS—Evaporation Control System EFE—Early Fuel Evaporation A For below 4000 ft. altitude ♦Also for Federal above 4000 ft. altitude

CHA—Carburetor Heated Air UFC—Under Floor Converter (Catalytic Converter) AIR—Air Injection Reactor TRC—Throttle Return Control ISS—Idle Stop Solenoid

1977 CHEVROLET HIGH ALTITUDE EMISSIONS REGULATIONS

The Environmental Protection Agency recently revised its vehicle emissions regulations relating to emission certification of light-duty vehicles and light-duty trucks designed for principal use at high altitude locations (above 4,000 feet). This revised regulation becomes effective with 1977 models. Each manufacturer may decide which series or types of light-duty vehicles it will certify for high altitude. 1976 models are not affected by the revised regulations.

Under the Clean Air Act and these EPA revised regulations, the manufacturer cannot sell or deliver a low-altitude vehicle to dealers at a designated high-altitude location "unless the manufacturer has substantial reason to believe that the vehicle will not be sold to an ultimate purchaser for principal use at a designated high-altitude location." The regulation clarifies this requirement by stating that a violation of the Clean Air Act "does not occur upon sale of a low altitude vehicle at a high altitude location where the manufacturer or his agent has taken reasonable and prudent steps to ascertain that the place of principal use is not a designated high altitude location..." The EPA also expresses the opinion that manufacturers should "not find it difficult to require (high altitude) dealers to ascertain that the place of principal use of any low altitude vehicles they might sell is not in a designated county" and that EPA "would expect such efforts in order to satisfy the regulation."

A list of the 167 EPA designated high-altitude counties and the states in which they are situated is on page 15.

In view of these revised EPA vehicle emissions regulations, beginning with 1977 model Chevrolet passenger car and light-duty truck production, Chevrolet will build three different categories of light-duty vehicles relating to emissions certification: vehicles certified for low-altitude use outside the State of California (at locations under 4,000 feet); certain vehicles certified for high-altitude use outside the State of California (in 167 EPA designated high-altitude counties, above 4,000 feet;) and certain vehicles certified for sale and use in California.

1977 CHEVROLET HIGH ALTITUDE EMISSIONS REGULATIONS

COUNTIES ABOVE 4,000-FT. ALTITUDE

Following is a listing of the 167 EPA-designated high-altitude counties and the states in which they are located:

Nebraska

Ranner

Sioux

Kimball

Arizona Colorado (Contd.) Apache Navajo Colorado Adams Alamosa Arapahoe Archuleta Boulder Chaffee Clear Creek Idaho Conejos Costilla Crowley Custer Delta Denver Dolores Douglas Eagle Elbert El Paso Freemont Garfield Gilpin Grand Gunnison Hinsdale Huerfano Jackson Jefferson Lake La Plata Larimer Las Animas Montana Lincoln Mineral Mesa Moffat Montrose Madison Montezuma Morgan Meagher Ouray Park Silver Bow Park

Pitkin Pueblo **Rio Blanco Rio Grande** Routt Saguache San Juan San Miguel Summit Teller Washington Weld

Bannock Bear Lake Bingham **Bonneville** Blaine Butte Camas Caribou Cassia Clark Custer Franklin Fremont Jefferson Madison Minidoka Oneida Power Teton Valley Beaverhead Deer Lodge Gallatin Jefferson

Nevada Carson City* Douglas Elko Esmeralda Eureka Humboldt Lander Lyon Mineral Storey White Pine **New Mexico Bernalillo** Catron Colfax Curry De Baca Grand Guadalupe Harding Lincoln Los Alamos Luna **McKinley** Mora Rio Arriba Sandoval Santa Fe San Juan San Miguel Sierra Socorro Taos Torrance Union Valencia

Oregon

Klamath Lake

Utah Beaver Box Elder Cache Carbon Daggett Davis Duschesne Emerv Grand Iron Jaub Kane Millard Morgan Piute Rich Salt Lake San Juan Sanpete Sevier Summit Tooele Unitah Utah Wasatch Wayen

Wyoming

Weber

Albany Carbon Converse Fremont Goshen Hot Springs Johnson Laramie Lincoln Natrona Niobrara Park Platte Sublette Sweetwater Teton Unita Weston

*Formerly Ormsby County, Nevada

Chassis/Engine—Page 15

1977 CHEVROLET METRIC MEASUREMENT

SPEED & VELOCITY

CONVERSIONS

1 mile per hour = 1.609 kilometers per hour

10 mph=16 kph 20 mph=32 kph 30 mph=48 kph 40 mph=64 kph 50 mph=80 kph 55 mph=89 kph

ENGINE VOLUME

CONVERSIONS

1 cubic inch = .016 liters

Six Cylinder:

250 cu. in. = 4.1 liters 292 cu. in. = 4.8 liters

Eight Cylinder:

305 cu. in. = 5.0 liters 350 cu. in. = 5.7 liters 400 cu. in. = 6.6 liters 454 cu. in. = 7.4 liters 366 cu. in. = 6.0 liters427 cu. in. = 7.0 liters

1 sq. centimeter = 0.155 sq. inch

1 sq. kilometer = 247.1 acres or

= 1.196 sq. yards

0.3861 sq. miles

1 sq. meter

CONVERSION TABLES

AREA									
1 mile	=	1.609 kilometers	1 kil	ometer	=	0.6214 miles			
1 yard	=	0.9144 meters				or 1.0936 yards			
1 foot	=	30.48 centimeters	1 me	ter	=	39.37 inches or 3.281 feet			
1 inch	=	2.54 centimeters	1 cer	ntimeter	=	0.3937 inch			

1 sq. inch	=	6.452 sq. centimeters
1 sq. yard	=	0.8361 sq. meters
1 acre	=	4047 sq. meters
1 sq. mile	=	2.59 sq. kilometers

VOLUME

1 cu. inch	=	16.39 cu. centimeters	1 cu.	centimeter	=	0.061 cu. inch
1 cu. foot	=	0.028 cu. meters	1 cu.	meter	=	35.31 cu. feet or
1 cu. yard	=	0.7646 cu. meter				1.308 cu. yards
1 liquid gal. (U.S.)	=	3.785 liters	1 lite	r	=	61.02 cu. inches or
						0.2642 gal. (U.S.)

WEIGHT

1 ounce	=	28.35 grams	1 gram	=	0.035 ounce
1 pound	_	453.6 grams	1 kilogram	=	2.205 pounds
1 ton	=	907.2 kilograms	1 metric ton	=	2205 lbs. or 1.102 tons

Note: To find the number of metric units in a given number of english units — multiply the number of english units by the corresponding metric factor above; for example: Length 10 miles = 10 x 1.609 kilometers

10 miles = 16.09 kilometers

Chassis/Engine—Page 16